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Kirby’s Recursive Conundrum

Computers were invented to automate tedious, error-prone tasks.
Computer programming is a tedious, error-prone task. (R. Kirby)
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Kirby’s Recursive Conundrum

Computers were invented to automate tedious, error-prone tasks.
Computer programming is a tedious, error-prone task. (R. Kirby)

So why not program a computer to do it?
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Our goal: simplify FEM simulation development
without sacrificing performance

We want everything

Provide general multiphysics and intrusive capabiities, and a friendly
user interface, and high performance

v

Our approach

@ State in mathematical form the problems that arise “writing” an
efficient intrusive code

@ Write (by hand, once) a code to solve those meta-problems

A
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Differentiation provides a path to automation

The mathematics of FEM system assembly is summarized as:
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(From KL, Howle, Kirby, and van Bloemen Waanders 2008)
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The key idea

These equations bridge high-level problem specification and low-level
computation. Fréchet differentiation connects:

@ The abstract problem specification 7

@ The discretization specification: 1, ¢, and integration procedure

8°F OF
ov;ou; and

@ The discrete matrix and vector elements
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A plan for automation

To make practical use of the “bridge theorem” we need:

@ A data structure for high-level symbolic description of functionals
F

o Integrands F represented as DAG

@ Automated selection of basis function combinations from
element library, given signature of derivative

@ Connection to finite element infrastructure for basis functions,
mesh, quadrature, linear algebra, and solvers

@ A top-level layer for problem specification

@ A method to automate the organization of efficient in-place

computations of numerical values of %—f, etc, given DAG for F
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Sundance: a Trilinos package taking high-level
abstractions to efficient code

Poisson-Boltzmann solver in a notebook
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Sundance: a Trilinos package taking high-level

abstractions to efficient code

Poisson-Boltzmann solver in Sundance

Mesh mesh = mesher.getMesh() ;

/% Create a cell filter that will identify the maxinal cells
e interior of the domain */

- ntersor — nes HoximalCAIFiLter ();

CellFilter edges = new DimensionalCellFilter (1);

CellFilter Teft = edges.labeledsubset(1);

/7 creste st-order

int order
EXpr u = new inknowFunction new Lagrange (order),

Expr v = new TestFunction(new Lagrange (order), v

/* Create differential operator and coordinate fur
Eor'dh = new et lvative(0):
w Derivative(1);

Erbr arad = bistia s

/* We need a quadrature rule for doing the integrations */
QuadratureFamily quad2 = new GaussianQuadrature(2);
QuadratureFamily quad4 = new GaussianQuadrature(4);

/* Define the weak form */|

Expr eqn = Integral (interior, (grad+u)*(grad*v) + vexp(-u), quad2);

e the Dirichlet BC */

EssentialBC(left, vH(u-1.0), quadd);

ol st {ze thel firceion 1.6/
. vecType);
10!

rete space,

pa
now Discroterunction(discapace. 1.0,

/* Create a TSF Nonlinearoperator cbject */
NonLinearoperator<doubles 7
w NonlinearProblem(mesh, eqn, bc, v, u, 0, vecType);
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Math-based automated assembly is at least as

efficient as matrix assembly in hand-coded,
problem-tuned “gold standard” codes

@ Comparison of assembly times for
3D forward problems
@ Sundance uses same solvers
(Trilinos) as gold-standard codes
@ MP-Salsa and Fuego don’t allow
instrusion
@ Can only compare forward problem
performance
o Comparisons do not include
additional gains enabled by
Sundance’s intrusive capabilities

Fully-implicit 3D Navier-Stokes
assembly time
(Sundance vs MP-Salsa)
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Navier-Stokes assembly times
(Sundance vs Fuego)
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Parallel scalability of assembly process

Processors | Assembly time
4 54.5

16 54.7

32 54.3

128 54.4

256 54.4

@ Assembly times for a model CDR problem on ASC Red Storm

@ Weak scalability means: assembly time remains constant as
number of processors increases in proportion to problem size

@ Results demonstrate Sundance is weakly scalable
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How can user-friendly, intrusion-friendly code
be fast?

High performance is a result of:

@ Amortization of overhead

@ Careful memory management

@ Effective use of BLAS

@ Work reduction through data flow analysis

With our unified formulation, effort spent tuning computational kernels
applies immediately to diverse problem types and arbitrary PDE

4
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Amortization, memory managment, and BLAS

Amortize DAG traversal
@ Process batches of elements and quadrature points

Minimize allocations and copies

@ Maintain a stack of work vectors
@ Automatically identify vectors that can operated into
@ e.g. identify opportunities for x+=y instead of x=x+y

@ Aggregate integral transformations, hit with level 3 BLAS
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Pre-computation data flow analysis lets us

avoid unnecessary work

Sparsity determination

@ Don't store or compute derivatives known to be zero or unused
@ Distinguish spatially-constant from spatially-variable derivatives

v

We must track data flow through these operations:

@ Multivariable, multiargument chain rule (special cases: +,-,x,/)
@ Spatial differentiation

| \

Set theoretical data flow analysis

@ Tracks changes in sets of nonzero, constant, and variable
derivatives through evaluation process

@ Implemented using STL set/multiset classes

A\
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A key to high level simplicity without low
performance: division of labor

Decouple user-level representiation from low-level evaluation

Reduces human factors / performance tradeoffs

@ User-level objects optimized for human factors
@ Low-level objects optimized for performance

v

Allows interchangeable evaluators under a common interface

@ Easy to upgrade, tune, and experiment with evaluators w/o
impact on user

@ Future: different evaluators for different architectures
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@ Mathematical formulation of discrete system assembly process
enables automated transition from “blackboard” mathematics to
efficient PDE simulation

@ Automated assembly code compares favorably in both efficiency
and scalability to “gold standard” simulators

@ Our method transparently enables intrusive algorithms, realizing
even greater performance gains for optimization, sensitivity, and
uQ

@ By developing a unifying mathematical framework for PDE

simulation, our results can be applied to a wide range of types of
discretization methods and physical problems

The one-sentence description

We use high-level symbolic components to automate the organization
of low-level high-performance numerical computations




