
SANDIA REPORT
SAND2019-0537
Unlimited Release
Printed January 2019

MueLu User’s Guide

Luc Berger-Vergiat, Christian A. Glusa, Jonathan J. Hu, Matthias Mayr, Andrey
Prokopenko, Christopher M. Siefert, Raymond S. Tuminaro, Tobias A. Wiesner
Approved for public release; further dissemination unlimited.

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
and Livermore, California 94550



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2



SAND2019-0537
Unlimited Release

Printed January 2019

MueLu User’s Guide

Luc Berger-Vergiat
Computational Mathematics
Sandia National Laboratories
Mailstop 1320, P.O. Box 5800
Albuquerque, NM 87185-1322

lberge@sandia.gov

Christian A. Glusa
Scalable Algorithms

Sandia National Laboratories
Mailstop 1318, P.O. Box 5800
Albuquerque, NM 87185-1322

caglusa@sandia.gov

Jonathan J. Hu
Scalable Algorithms

Sandia National Laboratories
Mailstop 9159, P.O. Box 0969
Livermore, CA 94551-0969

jhu@sandia.gov

Matthias Mayr
Institute for Mathematics

& Computer-Based Simulation
University of the Bundeswehr Munich

Werner-Heisenberg-Weg 39
85577 Neubiberg, Germany
matthias.mayr@unibw.de

Andrey Prokopenko
Oak Ridge National Laboratory

P.O. Box 2008
Bldg 5700, MS 6164
Oak Ridge, TN 37831

Christopher M. Siefert
Scalable Algorithms

Sandia National Laboratories
Mailstop 1322, P.O. Box 5800
Albuquerque, NM 87185-1322

csiefer@sandia.gov

Raymond S. Tuminaro
Computational Mathematics
Sandia National Laboratories
Mailstop 9159, P.O. Box 0969
Livermore, CA 94551-0969

rstumin@sandia.gov

Tobias Wiesner
Leica Geosystems AG

Heinrich-Wild-Strasse 201
9435 Heerbrugg, Switzerland

tobias.wiesner@leica-geosystems.com

3



Abstract

This is the official user guide for MUELU multigrid library in Trilinos version 12.17 (Dev) .
This guide provides an overview of MUELU, its capabilities, and instructions for new users who
want to start using MUELU with a minimum of effort. Detailed information is given on how to
drive MUELU through its XML interface. Links to more advanced use cases are given. This guide
gives information on how to achieve good parallel performance, as well as how to introduce new
algorithms. Finally, readers will find a comprehensive listing of available MUELU options. Any
options not documented in this manual should be considered strictly experimental.

4



Acknowledgment

Many people have helped develop MUELU and/or provided valuable feedback, and we would
like to acknowledge their contributions here: Tom Benson, Julian Cortial, Eric Cyr, Stefan Domino,
Travis Fisher, Jeremie Gaidamour, Axel Gerstenberger, Chetan Jhurani, Mark Hoemmen, Paul Lin,
Eric Phipps, Siva Rajamanickam, Nico Schlömer, and Paul Tsuji.

5



6



Contents

1 Introduction 13

2 Multigrid background 15

3 Getting Started 17

3.1 Overview of MUELU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Configuration and Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Examples in code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 MUELU as a preconditioner within BELOS . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 MUELU as a preconditioner for AZTECOO . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 MUELU’s structured algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.4 MUELU’s Maxwell solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.5 Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Performance tips 27

5 MUELU options 29

5.1 Using parameters on individual levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Parameter validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 General options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Smoothing and coarse solver options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Aggregation options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7



5.6 Rebalancing options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.7 Multigrid algorithm options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.8 Reuse options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9 Miscellaneous options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.10 Maxwell solver options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 MUEMEX: The MATLAB Interface for MUELU 45

6.1 CMake Configure and Make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 BLAS & LAPACK Option #1: Static Builds . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.2 BLAS & LAPACK Option #2: LD PRELOAD . . . . . . . . . . . . . . . . . . . . . . 47

6.1.3 Running MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Using MUEMEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.1 Setup Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.2 Solve Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.3 Cleanup Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.4 Status Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.5 Get Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2.6 Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 51

Appendix

A Copyright and License 53

B ML compatibility 55

B.1 Usage of ML parameter lists with MUELU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.1.1 MLParameterListInterpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8



B.1.2 ML2MueLuParameterTranslator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B.2 Compatible ML parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B.2.1 General ML options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B.2.2 Smoothing and coarse solver options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B.2.3 Transfer operator options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.2.4 Rebalancing options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9



List of Figures

10



List of Tables

3.1 MUELU’s required and optional dependencies, subdivided by whether a depen-
dency is that of the MUELU library itself (Library), or of some MUELU test (Test-
ing). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Verbosity levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Supported problem types (“–” means not set). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Commonly used smoothers provided by IFPACK/IFPACK2. Note that these smoothers
can also be used as coarse grid solvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Commonly used direct solvers provided by AMESOS/AMESOS2 . . . . . . . . . . . . . . . 32

5.5 Available coarsening schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.6 Available multigrid algorithms for generating grid transfer matrices. . . . . . . . . . . . 39

5.7 Available reuse options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11



12



Chapter 1

Introduction

This guide gives an overview of MUELU’s capabilities. If you are looking for a tutorial, please
refer to the MUELU tutorial in muelu/doc/Tutorial (see also [19]). New users should start
with §3. It strives to give the new user all the information he/she might need to begin using MUELU

quickly. Users interested in performance, especially in parallel context, should refer to §4. Users
looking for a particular option should consult §5, containing a complete set of supported options
in MUELU.

If you find any errors or omissions in this guide, have comments or suggestions, or would like
to contribute to MUELU development, please contact the MUELU users list, or developers list or
open an issue on the Trilinos github repository.

13

mailto:muelu-users@software.sandia.gov
mailto:muelu-developers@software.sandia.gov
https://github.com/trilinos/Trilinos


14



Chapter 2

Multigrid background

Here we provide a brief multigrid introduction (see [6] or [16] for more information). A
multigrid solver tries to approximate the original problem of interest with a sequence of smaller
(coarser) problems. The solutions from the coarser problems are combined in order to acceler-
ate convergence of the original (fine) problem on the finest grid. A simple multilevel iteration is
illustrated in Algorithm 1.

Algorithm 1 V-cycle multigrid with N levels to solve Ax = b.
A0 = A
function MULTILEVEL(Ak, b, u, k)

// Solve Ak u = b (k is current grid level)
u = S1

m(Ak,b,u)
if (k 6= N−1) then

Pk = determine interpolant( Ak )
Rk = determine restrictor( Ak )
r̂k+1 = Rk(b−Aku)
Ak+1 = RkAkPk
v = 0
MULTILEVEL(Âk+1, r̂k+1, v, k+1)
u = u+Pkv
u = S2

m(Ak,b,u)
end if

end function

In the multigrid iteration in Algorithm 1, the S1
m()’s and S2

m()’s are called pre-smoothers and
post-smoothers. They are approximate solvers (e.g., symmetric Gauss-Seidel), with the subscript
m denoting the number of applications of the approximate solution method. The purpose of a
smoother is to quickly reduce certain error modes in the approximate solution on a level k. For
symmetric problems, the pre- and post-smoothers should be chosen to maintain symmetry (e.g.,
forward Gauss-Seidel for the pre-smoother and backward Gauss-Seidel for the post-smoother).
The Pk’s are interpolation matrices that transfer solutions from coarse levels to finer levels. The
Rk’s are restriction matrices that restrict a fine level residual to a coarser level. In a geometric
multigrid, Pk’s and Rk’s are determined by the application, whereas in an algebraic multigrid they
are automatically generated. For symmetric problems, typically Rk = PT

k . For nonsymmetric prob-
lems, this is not necessarily true. The Ak’s are the coarse level problems, and are generated through

15



a Galerkin (triple matrix) product.

Please note that the algebraic multigrid algorithms implemented in MUELU generate the grid
transfers Pk automatically and the coarse problems Ak via a sparse triple matrix product. TRILINOS

provides a wide selection of smoothers and direct solvers for use in MUELU through the IFPACK,
IFPACK2, AMESOS, and AMESOS2 packages (see §5).

16



Chapter 3

Getting Started

This section is meant to get you using MUELU as quickly as possible. §3.1 gives a summary
of MUELU’s design. §3.2 lists MUELU’s dependencies on other TRILINOS libraries and provides
a sample cmake configuration line. Finally, code examples using the XML interface are given in
§3.3.

3.1 Overview of MUELU

MUELU is an extensible algebraic multigrid (AMG) library that is part of the TRILINOS

project. MUELU works with EPETRA (32-bit version) and TPETRA matrix types. The library
is written in C++ and allows for different ordinal (index) and scalar types. MUELU is designed to
be efficient on many different computer architectures, from workstations to supercomputers, rely-
ing on “MPI+X” principle, where “X” can be threading, CUDA, or any other back-end provided
by the KOKKOS package.

MUELU provides a number of different multigrid algorithms:

1. smoothed aggregation AMG (for Poisson-like and elasticity problems);

2. Petrov-Galerkin aggregation AMG (for convection-diffusion problems);

3. energy-minimizing AMG;

4. aggregation-based AMG for problems arising from the eddy current formulation of Maxwell’s
equations.

MUELU’s software design allows for the rapid introduction of new multigrid algorithms. The most
important features of MUELU can be summarized as:

Easy-to-use interface

MUELU has a user-friendly parameter input deck which covers most important use cases.
Reasonable defaults are provided for common problem types (see Table 5.2).

17



Modern object-oriented software architecture

MUELU is written completely in C++ as a modular object-oriented multigrid framework,
which provides flexibility to combine and reuse existing components to develop novel multi-
grid methods.

Extensibility

Due to its flexible design, MUELU is an excellent toolkit for research on novel multigrid
concepts. Experienced multigrid users have full access to the underlying framework through
an advanced XML based interface. Expert users may use and extend the C++ API directly.

Integration with TRILINOS library

As a package of TRILINOS, MUELU is well integrated into the TRILINOS environment.
MUELU can be used with either the TPETRA or EPETRA (32-bit) linear algebra stack. It
is templated on the local index, global index, scalar, and compute node types. This makes
MUELU ready for future developments.

Broad range of supported platforms

MUELU runs on wide variety of architectures, from desktop workstations to parallel Linux
clusters and supercomputers ([10]).

Open source

MUELU is freely available through a simplified BSD license (see Appendix A).

3.2 Configuration and Build

MUELU has been compiled successfully under Linux with the following C++ compilers: GNU
versions 4.1 and later, Intel versions 12.1/13.1, and clang versions 3.2 and later. In the future, we
recommend using compilers supporting C++11 standard.

3.2.1 Dependencies

Required Dependencies

MUELU requires that TEUCHOS and either EPETRA/IFPACK or TPETRA/IFPACK2 are enabled.

Recommended Dependencies

We strongly recommend that you enable the following TRILINOS libraries along with MUELU:

• EPETRA stack: AZTECOO, EPETRA, AMESOS, IFPACK, ISORROPIA, GALERI, ZOLTAN;

18



• TPETRA stack: AMESOS2, BELOS, GALERI, IFPACK2, TPETRA, ZOLTAN2.

Tutorial Dependencies

In order to run the MUELU Tutorial [19] located in muelu/doc/Tutorial, MUELU must be
configured with the following dependencies enabled:

AZTECOO, AMESOS, AMESOS2, BELOS, EPETRA, IFPACK, IFPACK2, ISORROPIA, GALERI,
TPETRA, ZOLTAN, ZOLTAN2.

* Note that the MUELU tutorial [19] comes with a VirtualBox image with a pre-installed Linux
and TRILINOS. In this way, a user can immediately begin experimenting with MUELU without
having to install the TRILINOS libraries. Therefore, it is an ideal starting point to get in touch with
MUELU.

Complete List of Direct Dependencies

Dependency
Required Optional

Library Testing Library Testing
AMESOS × ×
AMESOS2 × ×
AZTECOO ×
BELOS ×
EPETRA × ×
IFPACK × ×
IFPACK2 × ×
ISORROPIA × ×
GALERI ×
KOKKOSCLASSIC ×
TEUCHOS × ×
TPETRA × ×
XPETRA × ×
ZOLTAN × ×
ZOLTAN2 × ×

Boost ×
BLAS × ×
LAPACK × ×
MPI × ×

Table 3.1. MUELU’s required and optional dependencies, subdi-
vided by whether a dependency is that of the MUELU library itself
(Library), or of some MUELU test (Testing).

19



Table 3.1 lists the dependencies of MUELU, both required and optional. If an optional depen-
dency is not present, the tests requiring that dependency are not built.

* AMESOS/AMESOS2 are necessary if one wants to use a sparse direct solve on the coarsest
level. ZOLTAN/ZOLTAN2 are necessary if one wants to use matrix rebalancing in parallel runs
(see §4). AZTECOO/BELOS are necessary if one wants to test MUELU as a preconditioner instead
of a solver.

* MUELU has also been successfully tested with SuperLU 4.1 and SuperLU 4.2.

* Some packages that MUELU depends on may come with additional requirements for third party
libraries, which are not listed here as explicit dependencies of MUELU. It is highly recommended
to install ParMetis 3.1.1 or newer for ZOLTAN, ParMetis 4.0.x for ZOLTAN2, and SuperLU 4.1 or
newer for AMESOS/AMESOS2.

3.2.2 Configuration

The preferred way to configure and build MUELU is to do that outside of the source direc-
tory. Here we provide a sample configure script that will enable MUELU and all of its optional
dependencies:
export TRILINOS_HOME=/path/to/your/Trilinos/source/directory

cmake \

-D BUILD_SHARED_LIBS:BOOL=ON \

-D CMAKE_BUILD_TYPE:STRING="RELEASE" \

-D CMAKE_CXX_FLAGS:STRING="-g" \

-D Trilinos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=OFF \

-D Trilinos_ENABLE_EXAMPLES:BOOL=OFF \

-D Trilinos_ENABLE_MueLu:BOOL=ON \

-D MueLu_ENABLE_TESTS:STRING=ON \

-D MueLu_ENABLE_EXAMPLES:STRING=ON \

-D MueLu_ENABLE_Kokkos_Refactor:STRING=ON \

-D MueLu_ENABLE_Kokkos_Refactor_Use_By_Default:STRING=ON \

-D TPL_ENABLE_BLAS:BOOL=ON \

-D TPL_ENABLE_MPI:BOOL=ON \

${TRILINOS_HOME}

More configure examples can be found in Trilinos/sampleScripts. For more information on
configuring, see the TRILINOS CMake Quickstart guide [1].

3.3 Examples in code

The most commonly used scenario involving MUELU is using a multigrid preconditioner in-
side an iterative linear solver. In TRILINOS, a user has a choice between EPETRA and TPETRA

20



for the underlying linear algebra library. Important Krylov subspace methods (such as precondi-
tioned CG and GMRES) are provided in TRILINOS packages AZTECOO (EPETRA) and BELOS

(EPETRA/TPETRA).

At this point, we assume that the reader is comfortable with TEUCHOS referenced-counted
pointers (RCPs) for memory management (an introduction to RCPs can be found in [3]) and the
Teuchos::ParameterList class [15].

3.3.1 MUELU as a preconditioner within BELOS

The following code shows the basic steps of how to use a MUELU multigrid preconditioner
with TPETRA linear algebra library and with a linear solver from BELOS. To keep the example
short and clear, we skip the template parameters and focus on the algorithmic outline of setting up
a linear solver. For further details, a user may refer to the examples and test directories.

First, we create the MUELU multigrid preconditioner. It can be done in a few ways. For in-
stance, multigrid parameters can be read from an XML file (e.g., mueluOptions.xml in the example
below).

Teuchos::RCP<Tpetra::CrsMatrix<> > A;

// create A here ...

std::string optionsFile = "mueluOptions.xml";

Teuchos::RCP<MueLu::TpetraOperator> mueLuPreconditioner =

MueLu::CreateTpetraPreconditioner(A, optionsFile);

The XML file contains multigrid options. A typical file with MUELU parameters looks like the
following.

<ParameterList name="MueLu">

<Parameter name="verbosity" type="string" value="low"/>

<Parameter name="max levels" type="int" value="3"/>

<Parameter name="coarse: max size" type="int" value="10"/>

<Parameter name="multigrid algorithm" type="string" value="sa"/>

<!-- Damped Jacobi smoothing -->

<Parameter name="smoother: type" type="string" value="RELAXATION"/>

<ParameterList name="smoother: params">

<Parameter name="relaxation: type" type="string" value="Jacobi"/>

<Parameter name="relaxation: sweeps" type="int" value="1"/>

<Parameter name="relaxation: damping factor" type="double" value="0.9"/>

</ParameterList>

<!-- Aggregation -->

21



<Parameter name="aggregation: type" type="string" value="uncoupled"/>

<Parameter name="aggregation: min agg size" type="int" value="3"/>

<Parameter name="aggregation: max agg size" type="int" value="9"/>

</ParameterList>

It defines a three level smoothed aggregation multigrid algorithm. The aggregation size is between
three and nine(2D)/27(3D) nodes. One sweep with a damped Jacobi method is used as a level
smoother. By default, a direct solver is applied on the coarsest level. A complete list of available
parameters and valid parameter choices is given in §5 of this User’s Guide.

Users can also construct a multigrid preconditioner using a provided ParameterList without
accessing any files in the following manner.

Teuchos::RCP<Tpetra::CrsMatrix<> > A;

// create A here ...

Teuchos::ParameterList paramList;

paramList.set("verbosity", "low");

paramList.set("max levels", 3);

paramList.set("coarse: max size", 10);

paramList.set("multigrid algorithm", "sa");

// ...

Teuchos::RCP<MueLu::TpetraOperator> mueLuPreconditioner =

MueLu::CreateTpetraPreconditioner(A, paramList);

Besides the linear operator A, we also need an initial guess vector for the solution X and a right
hand side vector B for solving a linear system.

Teuchos::RCP<const Tpetra::Map<> > map = A->getDomainMap();

// Create initial vectors

Teuchos::RCP<Tpetra::MultiVector<> > B, X;

X = Teuchos::rcp( new Tpetra::MultiVector<>(map,numrhs) );

Belos::MultiVecTraits<>::MvRandom( *X );

B = Teuchos::rcp( new Tpetra::MultiVector<>(map,numrhs) );

Belos::OperatorTraits<>::Apply( *A, *X, *B );

Belos::MultiVecTraits<>::MvInit( *X, 0.0 );

To generate a dummy example, the above code first declares two vectors. Then, a right hand side
vector is calculated as the matrix-vector product of a random vector with the operator A. Finally,
an initial guess is initialized with zeros.

Then, one can define a Belos::LinearProblem object where the mueLuPreconditioner is
used for left preconditioning

Belos::LinearProblem<> problem( A, X, B );

problem->setLeftPrec(mueLuPreconditioner);

22



bool set = problem.setProblem();

Next, we set up a BELOS solver using some basic parameters

Teuchos::ParameterList belosList;

belosList.set( "Block Size", 1 );

belosList.set( "Use Single Reduction", true );

belosList.set( "Maximum Iterations", 100 );

belosList.set( "Convergence Tolerance", 1e-10 );

belosList.set( "Output Frequency", 1 );

belosList.set( "Verbosity", Belos::TimingDetails + Belos::FinalSummary );

Belos::BlockCGSolMgr<> solver( rcp(&problem,false), rcp(&belosList,false) );

Finally, we solve the system.

Belos::ReturnType ret = solver.solve();

3.3.2 MUELU as a preconditioner for AZTECOO

For EPETRA, users have two library options: BELOS (recommended) and AZTECOO. AZTECOO
and BELOS both provide fast and mature implementations of common iterative Krylov linear
solvers. BELOS has additional capabilities, such as Krylov subspace recycling and “tall skinny
QR”.

Constructing a MUELU preconditioner for Epetra operators is done in a similar manner to
Tpetra.

Teuchos::RCP<Epetra_CrsMatrix> A;

// create A here ...

Teuchos::RCP<MueLu::EpetraOperator> mueLuPreconditioner;

std::string optionsFile = "mueluOptions.xml";

mueLuPreconditioner = MueLu::CreateEpetraPreconditioner(A, optionsFile);

MUELU parameters are generally Epetra/Tpetra agnostic, thus the XML parameter file could be
the same as §3.3.1.

Furthermore, we assume that a right hand side vector and a solution vector with the initial guess
are defined.

Teuchos::RCP<const Epetra_Map> map = A->DomainMap();

Teuchos::RCP<Epetra_Vector> B = Teuchos::rcp(new Epetra_Vector(map));

Teuchos::RCP<Epetra_Vector> X = Teuchos::rcp(new Epetra_Vector(map));

X->PutScalar(0.0);

Then, an Epetra LinearProblem can be defined.

23



Epetra_LinearProblem epetraProblem(A.get(), X.get(), B.get());

The following code constructs an AZTECOO CG solver.

AztecOO aztecSolver(epetraProblem);

aztecSolver.SetAztecOption(AZ_solver, AZ_cg);

aztecSolver.SetPrecOperator(mueLuPreconditioner.get());

Finally, the linear system is solved.

int maxIts = 100;

double tol = 1e-10;

aztecSolver.Iterate(maxIts, tol);

3.3.3 MUELU’s structured algorithms

Some users might use structured meshes to discretize their problems. In such cases it can be
advantageous to use the structured grid algorithms provided in MUELU. To use these algorithms
the user has to provide extra information to MUELU such as the number of spatial dimensions in
the problem and the number of nodes in each direction on the local rank. As demonstrated in the
code bellow MUELU expect these additional inputs to be stored in a sublist called “user data”.

const std::string userName = "user data";

Teuchos::ParameterList& userParamList = paramList.sublist(userName);

userParamList.set<int>("int numDimensions", numDimensions);

userParamList.set<Teuchos::Array<LO> >("Array<LO> lNodesPerDim", lNodesPerDim);

userParamList.set<RCP<RealValuedMultiVector> >("Coordinates", coordinates);

H = MueLu::CreateXpetraPreconditioner(A, paramList, paramList);

Full examples demonstrating the structured capabilities of MUELU can be found in the TRILINOS

source directories

• packages/muelu/test/structured,
• packages/trilinoscouplings/examples/scaling.

3.3.4 MUELU’s Maxwell solver

MUELU can be used to solve Maxwell’s equations in eddy current formulation which can be
written as

∇×
(

α∇×~E
)
+β~E = ~f , (3.1)

24



where ~E is the unknown electric field, α and β are material parameters, and ~f is the known right-
hand side. In order to deal with the large nullspace of the curl-curl operator a specialized multigrid
approach is required. For a detailed description of the solver see [5].

A preconditioner for equation 3.1 can be constructed as follows:

RCP<Matrix> SM_Matrix = ... ; \\ Edge-mass + curl-curl

RCP<Matrix> D0_Matrix = ... ; \\ Discrete gradient matrix

RCP<Matrix> M0inv_Matrix = ... ; \\ Approximate inverse of node-mass matrix

with weight 1/alpha

RCP<Matrix> M1_Matrix = ... ; \\ Edge-mass matrix with constant weight 1

RCP<MultiVector> coords = ...; \\ Nodal coordinates

Teuchos::ParameterList params = ...; \\ Parameters

RCP<MueLu::RefMaxwell> preconditioner

= rcp( new MueLu::RefMaxwell(SM_Matrix, D0_Matrix, M0inv_Matrix,

M1_Matrix, Teuchos::null, coords, params) );

An example set of parameters is given below:

<ParameterList name="MueLu">

<Parameter name="refmaxwell: mode" type="string" value="additive"/>

<Parameter name="smoother: type" type="string" value="RELAXATION"/>

<ParameterList name="smoother: params">

<Parameter name="relaxation: type" type="string" value="Symmetric Gauss-Seidel

"/>

<Parameter name="relaxation: sweeps" type="int" value="2"/>

</ParameterList>

<ParameterList name="refmaxwell: 11list">

<Parameter name="number of equations" type="int" value="3"/>

<Parameter name="aggregation: type" type="string" value="uncoupled"/>

<Parameter name="coarse: max size" type="int" value="2500"/>

<Parameter name="smoother: type" type="string" value="RELAXATION"/>

<ParameterList name="smoother: params">

<Parameter name="relaxation: type" type="string" value="Symmetric Gauss-

Seidel"/>

<Parameter name="relaxation: sweeps" type="int" value="2"/>

</ParameterList>

</ParameterList>

<ParameterList name="refmaxwell: 22list">

<Parameter name="aggregation: type" type="string" value="uncoupled"/>

<Parameter name="coarse: max size" type="int" value="2500"/>

<Parameter name="smoother: type" type="string" value="RELAXATION"/>

<ParameterList name="smoother: params">

25



<Parameter name="relaxation: type" type="string" value="Symmetric Gauss-

Seidel"/>

<Parameter name="relaxation: sweeps" type="int" value="2"/>

</ParameterList>

</ParameterList>

</ParameterList>

Further examples of how to use MUELU to solve Maxwell’s equations can be found in the TRILI-
NOS source directories

• packages/muelu/test/maxwell,
• packages/panzer/mini-em/example/BlockPrec and
• packages/trilinoscouplings/examples/scaling.

3.3.5 Further remarks

This section is only meant to give a brief introduction on how to use MUELU as a precon-
ditioner within the TRILINOS packages for iterative solvers. There are other, more complicated,
ways to use MUELU as a preconditioner for BELOS and AZTECOO through the XPETRA inter-
face. Of course, MUELU can also work as standalone multigrid solver. For more information
on these topics, the reader may refer to the examples and tests in the MUELU source directory
(packages/muelu/example and packages/muelu/test) and in the trilinosCouplings source di-
rectory (packages/trilinosCouplings), as well as to the MUELU tutorial [19]. For in-depth
details of MUELU applied to multiphysics problems, please see [18].

26



Chapter 4

Performance tips

In practice, it can be very challenging to find an appropriate set of multigrid parameters for a
specific problem, especially if few details are known about the underlying linear system. In this
Chapter, we provide some advice for improving multigrid performance.

* For optimizing multigrid parameters, it is highly recommended to set the verbosity to high or
extreme for MUELU to output more information (e.g., for the effect of the chosen parameters to
the aggregation and coarsening process).

Some general advice:

• Choose appropriate iterative linear solver (e.g., GMRES for non-symmetric problems). If
available, set options to perform as few all-reduces as possible. (E.g. Use Single Reduction

in BELOS.)

• Start with the recommended settings for particular problem types. See Table 5.2.

• Choose reasonable basic multigrid parameters (see §5.3), including maximum number of
multigrid levels (max levels) and maximum allowed coarse size of the problem (coarse:
max size). Take fine level problem size and sparsity pattern into account for a reasonable
choice of these parameters.

• Select an appropriate transfer operator strategy (see §5.7). For symmetric problems, you
should start with smoothed aggregation multigrid. For non-symmetric problems, a Petrov-
Galerkin smoothed aggregation method is a good starting point, though smoothed aggrega-
tion may also perform well.

• Try unsmoothed operators instead of smoothed aggregation (sa). Scalability in terms of iter-
ations performed will suffer from this, but solution times might go down since the operators
are less dense, and less communication is performed.

• Enable implicit restrictor construction (transpose: use implicit) for symmetric prob-
lems.

• Enable triple matrix products instead of two matrix-matrix products for the construction
of coarse operators (rap: triple product). This is beneficial as long as the involved
operators are not too dense. For unsmoothed hierarchies, it is always faster.

27



• Find good level smoothers (see §5.4). If a problem is symmetric positive definite, choose
a smoother with a matrix-vector computational kernel, such as the Chebyshev polynomial
smoother. If you are using relaxation smoothers, we recommend starting with optimizing
the damping parameter. Once you have found a good damping parameter for your problem,
you can increase the number of smoothing iterations.

• Adjust aggregation parameters if you experience bad coarsening ratios (see §5.5). Particu-
larly, try adjusting the minimum (aggregation: min agg size) and maximum (aggregation:
max agg size) aggregation parameters. For a 2D (3D) isotropic problem on a regular mesh,
the aggregate size should be about 9 (27) nodes per aggregate.

• Replace a direct solver with an iterative method (coarse: type) if your coarse level solu-
tion becomes too expensive (see §5.4).

• If on-node parallelism is required, make sure to enable the KOKKOS code path (use kokkos

refactor). If Gauss-Seidel smoothing is used, switch to multi-threaded Gauss-Seidel (see §5.4).

Some advice for parallel runs include:

1. Enable matrix rebalancing when running in parallel (repartition: enable).

2. Use smoothers invariant to the number of processors, such as polynomial smoothing, if
possible.

3. Use uncoupled aggregation instead of coupled, as the latter requires significantly more
communication.

4. Adjust rebalancing parameters (see §5.6). Try choosing rebalancing parameters so that you
end up with one processor on the coarsest level for the direct solver (this avoids additional
communication).

5. If the multijagged algorithm from ZOLTAN 2 is used, try setting the premigration option.

6. Enable implicit rebalancing of prolongators and restrictors (repartition: rebalance P

and R).

28



Chapter 5

MUELU options

In this section, we report the complete list of MUELU input parameters. It is important to
notice, however, that MUELU relies on other TRILINOS packages to provide support for some
of its algorithms. For instance, IFPACK/IFPACK2 provide standard smoothers like Jacobi, Gauss-
Seidel or Chebyshev, while AMESOS/AMESOS2 provide access to direct solvers. The parameters
affecting the behavior of the algorithms in those packages are simply passed by MUELU to a
routine from the corresponding library. Please consult corresponding packages’ documentation for
a full list of supported algorithms and corresponding parameters.

5.1 Using parameters on individual levels

Some of the parameters that affect the preconditioner can in principle be different from level to
level. By default, parameters affect all levels in a multigrid hierarchy.

The settings on a particular level can be changed by using level sublists. A level sublist is a
ParameterList sublist with the name “level XX”, where XX is the level number. The parameter
names in the sublist do not require any modifications. For example, the following fragment of code

<ParameterList name="level 2">

<Parameter name="smoother: type" type="string" value="CHEBYSHEV"/>

</ParameterList>

changes the smoother for level 2 to be a Chebyshev-type polynomial smoother.

5.2 Parameter validation

By default, MUELU validates the input parameter list. A parameter that is misspelled is un-
known. A parameter with an incorrect value type is also treated as invalid. Both cases will cause
an exception to be thrown and execution to halt.

* Spaces are important within a parameter’s name. Please separate words by just one space, and
make sure there are no leading or trailing spaces.

29



The option print initial parameters prints the initial list given to the interpreter. The
option print unused parameters prints the list of unused parameters.

5.3 General options

Verbosity level Description

none No output
low Errors, important warnings, and some statistics
medium Same as low, but with more statistics
high Errors, all warnings, and all statistics
extreme Same as high, but also includes output from other packages (i.e.,

ZOLTAN)

Table 5.1. Verbosity levels.

Problem type Multigrid algorithm Block size Smoother

unknown – – –
Poisson-2D Smoothed aggregation 1 Chebyshev
Poisson-3D Smoothed aggregation 1 Chebyshev
Elasticity-2D Smoothed aggregation 2 Chebyshev
Elasticity-3D Smoothed aggregation 3 Chebyshev
Poisson-2D-complex Smoothed aggregation 1 Symmetric Gauss-Seidel
Poisson-3D-complex Smoothed aggregation 1 Symmetric Gauss-Seidel
Elasticity-2D-complex Smoothed aggregation 2 Symmetric Gauss-Seidel
Elasticity-3D-complex Smoothed aggregation 3 Symmetric Gauss-Seidel
ConvectionDiffusion Petrov-Galerkin AMG 1 Gauss-Seidel
MHD Unsmoothed aggregation – Additive Schwarz method

with one level of overlap
and ILU(0) as a subdo-
main solver

Table 5.2. Supported problem types (“–” means not set).

problem: type [string] Type of problem to be solved. Possible values:
see Table 5.2. Default: ”unknown”.

30



verbosity [string] Control of the amount of printed information.
Possible values: see Table 5.1. Default: ”high”.

number of equations [int] Number of PDE equations at each grid node. Only
constant block size is considered. Default: 1.

max levels [int] Maximum number of levels in a hierarchy. De-
fault: 10.

cycle type [string] Multigrid cycle type. Possible values: ”V”,
”W”. Default: ”V”.

problem: symmetric [bool] Symmetry of a problem. This setting affects the
construction of a restrictor. If set to true, the restric-
tor is set to be the transpose of a prolongator. If set to
false, underlying multigrid algorithm makes the deci-
sion. Default: true.

xml parameter file [string] An XML file from which to read additional pa-
rameters. In case of a conflict, parameters manually set
on the list will override parameters in the file. If the
string is empty a file will not be read. Default: ””.

hierarchy label [string] Label for the hierarchy. Is applied to timer la-
bels. Default: ””.

5.4 Smoothing and coarse solver options

MUELU relies on other TRILINOS packages to provide level smoothers and coarse solvers.
IFPACK and IFPACK2 provide standard smoothers (see Table 5.3), and AMESOS and AMESOS2
provide direct solvers (see Table 5.4). Note that it is completely possible to use any level smoother
as a direct solver.

MUELU checks parameters smoother: * type and coarse: type to determine:

• what package to use (i.e., is it a smoother or a direct solver);

• (possibly) transform a smoother type

31



* IFPACK and IFPACK2 use different smoother type names, e.g., “point relaxation stand-
alone” vs “RELAXATION”. MUELU tries to follow IFPACK2 notation for smoother types.
Please consult IFPACK2 documentation [12] for more information.

The parameter lists smoother: * params and coarse: params are passed directly to the corre-
sponding package without any examination of their content. Please consult the documentation of
the corresponding packages for a list of possible values.

By default, MUELU uses one sweep of symmetric Gauss-Seidel for both pre- and post-smoothing,
and SuperLU for coarse system solver.

smoother: type

RELAXATION Point relaxation smoothers, including Jacobi, Gauss-Seidel,
symmetric Gauss-Seidel, multithreaded (coloring-based)
Gauss-Seidel, etc. The exact smoother is chosen by spec-
ifying relaxation: type parameter in the smoother:

params sublist.
CHEBYSHEV Chebyshev polynomial smoother.
ILUT, RILUK Local (processor-based) incomplete factorization methods.

Table 5.3. Commonly used smoothers provided by IF-
PACK/IFPACK2. Note that these smoothers can also be used as
coarse grid solvers.

coarse: type AMESOS AMESOS2

KLU x Default AMESOS solver [8].
KLU2 x Default AMESOS2 solver [4].
SuperLU x x Third-party serial sparse direct solver [9].
SuperLU_dist x x Third-party parallel sparse direct

solver [9].
Umfpack x Third-party solver [7].
Mumps x Third-party solver [2].

Table 5.4. Commonly used direct solvers provided by AME-
SOS/AMESOS2

In certain cases, the user may want to do no smoothing on a particular level, or do no solve on
the coarsest level.

32



• To skip smoothing, use the option smoother: pre or post with value none.

• To skip the coarse grid solve, use the option coarse: type with value none.

When a problem can be solved using structured aggregation algorithms it is also possible to
use the structured line detection factory, this will allow MUELU to pass additional information to
IFPACK 2 enabling it to perform line smoothing. An example of line smoothing is provided in
packages/trilinoscouplings/examples/scaling/muelu Ifpack2 line detection.xml.

smoother: pre or post [string] Pre- and post-smoother combination. Possi-
ble values: ”pre” (only pre-smoother), ”post” (only
post-smoother), ”both” (both pre-and post-smoothers),
”none” (no smoothing). Default: ”both”.

smoother: type [string] Smoother type. Possible values: see Table 5.3.
Default: ”RELAXATION”.

smoother: pre type [string] Pre-smoother type. Possible values: see Ta-
ble 5.3. Default: ”RELAXATION”.

smoother: post type [string] Post-smoother type. Possible values: see Ta-
ble 5.3. Default: ”RELAXATION”.

smoother: params [ParameterList] Smoother parameters. For standard
smoothers, MUELU passes them directly to the appro-
priate package library.

smoother: pre params [ParameterList] Pre-smoother parameters. For stan-
dard smoothers, MUELU passes them directly to the ap-
propriate package library.

smoother: post params [ParameterList] Post-smoother parameters. For stan-
dard smoothers, MUELU passes them directly to the ap-
propriate package library.

smoother: overlap [int] Smoother subdomain overlap. Default: 0.

smoother: pre overlap [int] Pre-smoother subdomain overlap. Default: 0.

33



smoother: post overlap [int] Post-smoother subdomain overlap. Default: 0.

coarse: max size [int] Maximum dimension of a coarse grid. MUELU

will stop coarsening once it is achieved. Default: 2000.

coarse: type [string] Coarse solver. Possible values: see Table 5.4.
Default: ”SuperLU”.

coarse: params [ParameterList] Coarse solver parameters. MUELU

passes them directly to the appropriate package library.

coarse: overlap [int] Coarse solver subdomain overlap. Default: 0.

5.5 Aggregation options

structured Attempts to construct hexahedral aggregates on a structured
mesh using a default coarsening rate of 3 in each spatial
dimension.

hybrid This option takes in a user parameter that varies on
each rank and that specifies whether the local aggregation
scheme should be structured or unstructured.

uncoupled Attempts to construct aggregates of optimal size (3d nodes
in d dimensions). Each process works independently, and
aggregates cannot span multiple processes.

coupled Attempts to construct aggregates of optimal size (3d nodes
in d dimensions). Aggregates are allowed to cross proces-
sor boundaries. Use carefully. If unsure, use uncoupled

instead.
brick Attempts to construct rectangular aggregates

Table 5.5. Available coarsening schemes.

aggregation: type [string] Aggregation scheme. Possible values: see Ta-
ble 5.5. Default: ”uncoupled”.

34



aggregation: mode [string] Controls whether aggregates are allowed to
cross processor boundaries. Possible values: ”coupled”
aggregates can cross processor boundaries, ”uncou-
pled” aggregates cannot cross processor boundaries.
Default: ”uncoupled”.

aggregation: ordering [string] Node ordering strategy. Possible values: ”natu-
ral” (local index order), ”graph” (filtered graph breadth-
first order), ”random” (random local index order). De-
fault: ”natural”.

aggregation: drop scheme [string] Connectivity dropping scheme for a graph used
in aggregation. Possible values: ”classical”, ”distance
laplacian”. Default: ”classical”.

aggregation: drop tol [double] Connectivity dropping threshold for a graph
used in aggregation. Default: 0.0.

aggregation: min agg

size

[int] Minimum size of an aggregate. Default: 2.

aggregation: max agg

size

[int] Maximum size of an aggregate (-1 means unlim-
ited). Default: -1.

aggregation: brick x

size

[int] Number of points for x axis in ”brick” aggregation
(limited to 3). Default: 2.

aggregation: brick y

size

[int] Number of points for y axis in ”brick” aggregation
(limited to 3). Default: 2.

aggregation: brick z

size

[int] Number of points for z axis in ”brick” aggregation
(limited to 3). Default: 2.

aggregation: Dirichlet

threshold

[double] Threshold for determining whether entries are
zero during Dirichlet row detection. Default: 0.0.

35



aggregation: phase 1

algorithm

[string] Choice of algorithm for aggregation phase 1.
Default: Serial.

aggregation: export

visualization data

[bool] Export data for visualization post-processing.
Default: false.

aggregation: output

filename

[string] Filename to write VTK visualization data to.
Default: ””.

aggregation: output

file: time step

[int] Time step ID for non-linear problems. Default: 0.

aggregation: output

file: iter

[int] Iteration for non-linear problems. Default: 0.

aggregation: output

file: agg style

[string] Style of aggregate visualization. De-
fault: Point Cloud.

aggregation: output

file: fine graph edges

[bool] Whether to draw all fine node connections along
with the aggregates. Default: false.

aggregation: output

file: coarse graph edges

[bool] Whether to draw all coarse node connections
along with the aggregates. Default: false.

aggregation: output

file: build colormap

[bool] Whether to output a random colormap in a sepa-
rate XML file. Default: false.

aggregation: mesh layout [string] Type of ordering for structured mesh aggrega-
tion. Possible values: ”Global Lexicographic” and ”Lo-
cal Lexicographic”. Default: Global Lexicographic.

aggregation: output type [string] Type of object holding the aggregation data.
Possible values: ”Aggregates” or ”CrsGraph”. De-
fault: Aggregates.

aggregation: coarsening

rate

[string] Coarsening rate per spatial dimensions, the
string must be interpretable as an array by Teuchos. De-
fault: 3.

36



aggregation: number of

spatial dimensions

[int] The number of spatial dimensions in the problem.
Default: 3.

aggregation: coarsening

order

[int] The interpolation order used while constructing
these aggregates, this value will be passed to the pro-
longator factory. Default: 0.

5.6 Rebalancing options

repartition: enable [bool] Rebalancing on/off switch. Default: false.

repartition: partitioner [string] Partitioning package to use. Possible values:
”zoltan” (ZOLTAN library), ”zoltan2” (ZOLTAN2 li-
brary). Default: ”zoltan2”.

repartition: params [ParameterList] Partitioner parameters. MUELU

passes them directly to the appropriate package library.
In particular, this allows to choose a partitioning al-
gorithm from ZOLTAN or ZOLTAN 2 or from external
packages such as PARMETIS.

repartition: start level [int] Minimum level to run partitioner. MUELU does
not rebalance levels finer than this one. Default: 2.

repartition: min rows

per proc

[int] Minimum number of rows per MPI process. If the
actual number if smaller, then rebalancing occurs. The
value is not used if ”repartition: min rows per thread”
is positive. Default: 800.

repartition: target rows

per proc

[int] Target number of rows per MPI process after re-
balancing. If the value is set to 0, it will use the value
of ”repartition: min rows per proc” Default: 0.

37



repartition: min rows

per thread

[int] Minimum number of rows per thread. If the actual
number if smaller, then rebalancing occurs. If the value
is set to 0, no repartitioning based on thread count will
occur. Default: 0.

repartition: target rows

per thread

[int] Target number of rows per thread after rebalanc-
ing. If the value is set to 0, it will use the value of
”repartition: min rows per thread”. Default: 0.

repartition: max

imbalance

[double] Maximum nonzero imbalance ratio. If the
actual number is larger, the rebalancing occurs. De-
fault: 1.2.

repartition: remap parts [bool] Postprocessing for partitioning to reduce data
migration. Default: true.

repartition: rebalance P

and R

[bool] Explicit rebalancing of R and P during the setup.
This speeds up the solve, but slows down the setup
phases. Default: false.

38



5.7 Multigrid algorithm options

sa Classic smoothed aggregation [17]
unsmoothed Aggregation-based, same as sa but without damped Jacobi pro-

longator improvement step
pg Prolongator smoothing using A, restriction smoothing using AT ,

local damping factors [13]
emin Constrained minimization of energy in basis functions of grid

transfer operator [20, 11]
interp Interpolation based grid transfer operator, using piece-wise con-

stant or linear interpolation from coarse nodes to fine nodes. This
requires the use of structured aggregation.

semicoarsen Semicoarsening grid transfer operator used to reduce a n-
dimensional problem into a (n-1)-dimensional problem by coars-
ening fully in one of the spacial dimensions [14].

pcoarsen

Table 5.6. Available multigrid algorithms for generating grid
transfer matrices.

multigrid algorithm [string] Multigrid method. Possible values: see Ta-
ble 5.6. Default: ”sa”.

semicoarsen: coarsen

rate

[int] Rate at which to coarsen unknowns in the z direc-
tion. Default: 3.

sa: damping factor [double] Damping factor for smoothed aggregation.
Default: 1.33.

sa: use filtered matrix [bool] Matrix to use for smoothing the tentative prolon-
gator. The two options are: to use the original matrix,
and to use the filtered matrix with filtering based on fil-
tered graph used for aggregation. Default: true.

interp: interpolation

order

[int] Interpolation order used to interpolate values from
coarse points to fine points. Possible values are 0 for
piece-wise constant interpolation and 1 for piece-wise
linear interpolation. This parameter is set to 1 by de-
fault. Default: 1.

39



interp: build coarse

coordinates

[bool] If false, skip the calculation of coarse coordi-
nates. Default: true.

filtered matrix: use

lumping

[bool] Lump (add to diagonal) dropped entries during
the construction of a filtered matrix. This allows user
to preserve constant nullspace. Default: true.

filtered matrix: reuse

eigenvalue

[bool] Skip eigenvalue calculation during the construc-
tion of a filtered matrix by reusing eigenvalue estimate
from the original matrix. This allows us to skip heavy
computation, but may lead to poorer convergence. De-
fault: true.

emin: iterative method [string] Iterative method to use for energy minimiza-
tion of initial prolongator in energy-minimization. Pos-
sible values: ”cg” (conjugate gradient), ”gmres” (gen-
eralized minimum residual), ”sd” (steepest descent).
Default: ”cg”.

emin: num iterations [int] Number of iterations to minimize initial prolon-
gator energy in energy-minimization. Default: 2.

emin: num reuse

iterations

[int] Number of iterations to minimize the reused pro-
longator energy in energy-minimization. Default: 1.

emin: pattern [string] Sparsity pattern to use for energy minimiza-
tion. Possible values: ”AkPtent”. Default: ”AkPtent”.

emin: pattern order [int] Matrix order for the ”AkPtent” pattern. De-
fault: 1.

5.8 Reuse options

Reuse options are a way for a user to speed up the setup stage of multigrid. The main re-
quirement to use reuse is that the matrix’ graph structure does not change. Only matrix values are
allowed to change.

40



The reuse options control the degree to which the multigrid hierarchy is preserved for a subse-
quent setup call.

In addition, please note that not all combinations of multigrid algorithms and reuse options are
valid, or even make sense. For instance, the ”emin” reuse option should only be used with the
”emin” multigrid algorithm.

Table 5.7 contains the information about different reuse options. The options are ordered in
increasing number of reuse components, from the no reuse to the full reuse (”full”).

none No reuse
S Reuse only the symbolic information of the level smoothers.
tP Reuse tentative prolongator. The graphs of smoothed prolongator and

matrices in Galerkin product are reused only if filtering is not being used
(i.e., either sa: use filtered matrix or aggregation: drop tol

is false)
emin Reuse old prolongator as an initial guess to energy minimization, and

reuse the prolongator pattern
RP Reuse smoothed prolongator and restrictor. Smoothers are recomputed.

* RP should reuse matrix graphs for matrix-matrix product, but cur-
rently that is disabled as only EPETRA supports it.

RAP Recompute only the finest level smoothers, reuse all other operators
full Reuse everything

Table 5.7. Available reuse options.

reuse: type [string] Reuse options for consecutive hierarchy con-
struction. This speeds up the setup phase, but may lead
to poorer convergence. Possible values: see Table 5.7.
Default: ”none”.

41



5.9 Miscellaneous options

export data [ParameterList] Exporting a subset of the hierar-
chy data in a file. Currently, the list can contain
any of the following parameter names (“A”, “P”, “R”,
“Nullspace”, “Coordinates”) of type string and value
“{levels separated by commas}”. A matrix/multivector
with a name “X” is saved in two or three three Matrix-
Market files: a) data is saved in X level.mm; b) its row
map is saved in rowmap X level.mm; c) its column map
(for matrices) is saved in colmap X level.mm.

print initial parameters [bool] Print parameters provided for a hierarchy con-
struction. Default: true.

print unused parameters [bool] Print parameters unused during a hierarchy con-
struction. Default: true.

transpose: use implicit [bool] Use implicit transpose for the restriction opera-
tor. Default: false.

use kokkos refactor [bool] Switch on the new KOKKOS based version for
on-node parallelism. Default: false.

rap: triple product [bool] Use all-at-once triple matrix product kernel De-
fault: false.

5.10 Maxwell solver options

refmaxwell: mode [string] Specifying the order of solve of the block sys-
tem. Allowed values are: ”additive” (default), ”121”,
”212”, ”1”, ”2” Default: ”additive”.

refmaxwell: disable

addon

[bool] Specifing whether the addon should be built for
stabilization Default: true.

refmaxwell: 11list [ParameterList] Specifies the multigrid solver for the
11 block

42



refmaxwell: 22list [ParameterList] Specifies the multigrid solver for the
22 block

refmaxwell: use as

preconditioner

[bool] Assume zero initial guess Default: false.

refmaxwell: dump

matrices

[bool] Dump matrices to disk. Default: false.

refmaxwell: subsolves on

subcommunicators

[bool] Redistribute the two subsolves to disjoint sub-
communicators (so that the additive solve can occur in
parallel). Default: false.

refmaxwell: ratio AH /

A22 subcommunicators

[double] Ratio for the split into sub-communicators.
Default: 1.0.

43



44



Chapter 6

MUEMEX: The MATLAB Interface for
MUELU

MUEMEX is MUELU’s interface to the MATLAB environment. It allows access to a limited
set of routines either MUELU as a preconditioner, Belos as a solver and Epetra or Tpetra for
data structures. It is designed to provide access to MUELU’s aggregation and solver routines
from MATLAB and does little else. MUEMEX allows users to setup and solve arbitrarily many
problems, so long as memory suffices. More than one problem can be set up simultaneously.

6.1 CMake Configure and Make

To use MUEMEX, Trilinos must be configured with (at least) the following options:

export TRILINOS_HOME=/path/to/your/Trilinos/source/directory

cmake \

-D Trilinos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=ON \

-D Trilinos_ENABLE_Amesos:BOOL=ON \

-D Trilinos_ENABLE_Amesos2:BOOL=ON \

-D Amesos2_ENABLE_KLU2:BOOL=ON \

-D Trilinos_ENABLE_AztecOO:BOOL=ON \

-D Trilinos_ENABLE_Epetra:BOOL=ON \

-D Trilinos_ENABLE_EpetraExt:BOOL=ON \

-D Trilinos_ENABLE_Fortran:BOOL=OFF \

-D Trilinos_ENABLE_Ifpack:BOOL=ON \

-D Trilinos_ENABLE_Ifpack2:BOOL=ON \

-D Trilinos_ENABLE_MueLu:BOOL=ON \

-D Trilinos_ENABLE_Teuchos:BOOL=ON \

-D Trilinos_ENABLE_Tpetra:BOOL=ON \

-D TPL_ENABLE_MPI:BOOL=OFF \

-D TPL_ENABLE_MATLAB:BOOL=ON \

-D MATLAB_ROOT:STRING="<my matlab root>" \

-D MATLAB_ARCH:STRING="<my matlab os string>" \

-D Trilinos_EXTRA_LINK_FLAGS="-lrt -lm -lgfortran" \

${TRILINOS_HOME}

45



Since MUEMEX supports both the Epetra and Tpetra linear algebra libraries, you have to have
both enabled in order to build MUEMEX.

* If you turn off either Epetra or Tpetra then you will run into an error message: MueMex requires
Epetra, Tpetra and MATLAB.

Most additional options can be specified as well. It is important to note that MUEMEX does
not work properly with MPI, hence MPI must be disabled in order to compile MUEMEX. The
MATLAB ARCH option is new to the cmake build system, and involves the MATLAB-specific
architecture code for your system. There is currently no automatic way to extract this, so it must
be user-specified. As of MATLAB 7.9 (R2009b), common arch codes are:

Code OS
glnx86 32-bit Linux (intel/amd)
glnxa64 64-bit Linux (intel/amd)
maci64 64-bit MacOS
maci 32-bit MacOS

On 64-bit Intel/AMD architectures, Trilinos and all relevant TPLs (note: this includes BLAS
and LAPACK) must be compiled with the -fPIC option. This necessitates adding:

-D CMAKE_CXX_FLAGS:STRING="-fPIC" \

-D CMAKE_C_FLAGS:STRING="-fPIC" \

-D CMAKE_Fortran_FLAGS:STRING="-fPIC" \

to the cmake configure line.

The additional linker flags specified in Trilinos EXTRA LINK FLAGS may slightly vary de-
pending on the system and the exact configuration. But the given parameters may work for most
Linux based systems. If you encounter an error message like Target ”muemex.mexa64” links to
item ”-Wl,-rpath-link,/opt/matlab/bin/glnxa64 ” which has leading or trailing whitespace. you
have to add some options to the Trilinos EXTRA LINK FLAGS variable. At least adding -lm

should be safe and fix the error message.

6.1.1 BLAS & LAPACK Option #1: Static Builds

Trilinos does not play nicely with MATLAB’s default LAPACK and BLAS on 64-bit machines.
If MUEMEX randomly crashes when you run with any Krylov method that has orthogonalization,
chances are MUEMEX is finding the wrong BLAS/LAPACK libraries. This leaves you with one
of two options. The first is to build them both statically and then specify them as follows:

-D LAPACK_LIBRARY_DIRS:STRING="<path to my lapack.a>" \

-D BLAS_LIBRARY_DIRS:STRING="<path to my blas.a>" \

46



Using static linking for LAPACK and BLAS prevents MATLAB’s default libraries to take prece-
dence.

6.1.2 BLAS & LAPACK Option #2: LD PRELOAD

The second option is to use LD PRELOAD to tell MATLAB exactly which libraries to use. For
this option, you can use the dynamic libraries installed on your system. Before starting MATLAB,
set LD PRELOAD to the paths of libstdc++.so corresponding to the version of GCC used to build
Trilinos, and the paths of libblas.so and liblapack.so on your local system.

For example, if you use bash, you’d do something like this

export LD_PRELOAD=<path>/libstdc++.so:<path>/libblas.so:<path>/liblapack.so

For csh / tcsh, do this

setenv LD_PRELOAD <path>/libstdc++.so:<path>/libblas.so:<path>/liblapack.so

6.1.3 Running MATLAB

Before you run MATLAB you have to make sure that MATLAB is using the same libraries that
have been used for compiling MUEMEX. This includes the libstdc++.so and depending whether
you turned on/off fortran also libgfortran.so. Please make sure that the correct libraries and
paths are declared in the LD PRELOAD variable. You can refer to section 6.1.2 to see how the
LD PRELOAD variable is set.

For a 64 bit Linux system using the bash the command should look like

export LD_PRELOAD=/usr/lib64/libstdc++.so.6:/usr/lib64/libgfortran.so.3:

$LD_PRELOAD

to add the libstdc++.so and libgfortran.so to the existing LD PRELOAD variable. Then
run the MATLAB executable in the same shell window.

* Note, that this step is necessary even if you statically linked BLAS and LAPACK.

If you are unsure which libraries have to be set in the LD PRELOAD variable you will find out
latest if you start MATLAB and try to run MUEMEX. It will throw some error messages with the
missing library names. For a 64 bit Linux system the standard libraries usually can be found in
/usr/lib64 or /usr/lib (for a 32 bit system).

47



6.2 Using MUEMEX

MUEMEX is designed to be interfaced with via the MATLAB script muelu.m. There are five
modes in which MUEMEX can be run:

1. Setup Mode — Performs the problem setup for MUELU. Depending on whether or not
the Linear Algebra option is used, MUEMEX creates either an unpreconditioned Epetra
problem, an Epetra problem with MUELU, or a Tpetra problem with MUELU. The default is
tpetra. The epetra mode only supports real-valued matrices, while tpetra supports both
real and complex and will infer the scalar type from the matrix passed during setup. This
call returns a problem handle used to reference the problem in the future, and (optionally)
the operator complexity, if a preconditioner is being used.

2. Solve Mode — Given a problem handle and a right-hand side, MUEMEX solves the problem
specified. Setup mode must be called before solve mode.

3. Cleanup Mode — Frees the memory allocated to internal MUELU, Epetra and Tpetra ob-
jects. This can be called with a particular problem handle, in which case it frees that problem,
or without one, in which case all MUEMEX memory is freed.

4. Status Mode — Prints out status information on problems which have been set up. Like
cleanup, it can be called with or without a particular problem handle.

5. Get Mode — Get information from a MueLu hierarchy that has been generated. Given the
problem handle, a level number and the name of the field, returns the appropriate array or
scalar as a MATLAB object.

All of these modes, with the exception of status and cleanup take option lists which will be di-
rectly converted into Teuchos::ParameterList objects by MUEMEX, as key-value pairs. Op-
tions passed during setup will apply to the MUELU preconditioner, and options passed during a
solve will apply to Belos.

6.2.1 Setup Mode

Setup mode is called as follows:

>> [h, oc] = muelu(’setup’, A[, ’parameter’, value,...])

The parameter A represents the sparse matrix to perform aggregation on and the parameter/value
pairs represent standard MUELU options.

The routine returns a problem handle, h, and the operator complexity oc for the operator. In
addition to the standard options, setup mode has one unique option of its own:

48



Linear Algebra [string] Whether to use ’epetra unprec’, ’epetra’, or
’tpetra’. Default is ’epetra’ for real matrix and ’tpetra’
for complex matrix.

6.2.2 Solve Mode

Solve mode is called as follows:

>> [x, its] = muelu(h[, A], b[, ’parameter’, value,...])

The parameter h is a problem handle returned by the setup mode call, A is the sparse matrix with
which to solve and b is the right-hand side. Parameter/value pairs to configure the Belos solver are
listed as above. If A is not supplied, the matrix provided when setting up the problem will be used.
x is the solution multivector with the same dimensions as b, and its is the number of iterations
Belos needed to solve the problem.

All of these options are taken directly from Belos, so consult its manual for more information.
Belos output style and verbosity settings are implemented as enums, but can be set as strings in
MUEMEX. For example:

>> x = muelu(0, b, ’Verbosity’, ’Warnings + IterationDetails’, ...

’Output Style’, ’Brief’);

Verbosity settings can be separated by spaces, ’+’ or ’,’. Belos::Brief is the default output style.

6.2.3 Cleanup Mode

Cleanup mode is called as follows:

>> muelu(’cleanup’[, h])

The parameter h is a problem handle returned by the setup mode call and is optional. If h is
provided, that problem is cleaned up. If the option is not provided all currently set up problems are
cleaned up.

6.2.4 Status Mode

Status mode is called as follows:

>> muelu(’status’[, h])

49



The parameter h is a problem handle returned by the setup mode call and is optional. If h is
provided, status information for that problem is printed. If the option is not provided all currently
set up problems have status information printed.

6.2.5 Get Mode

Get mode is called as follows:

>> muelu(’get’, h, level, fieldName[, typeHint])

The parameter h is the problem handle, and level is an integer that identifies the level within the
hierarchy containing the desired data. fieldName is a string that identifies the field within the level,
e.g. ’Nullspace’. typeHint is an optional parameter that tells MueMex what data type to expect
from the level. This is a string, with possible values ’matrix’, ’multivector’, ’lovector’ (ordinal
vector), or ’scalar’. MueMex will attempt to guess the type from fieldName but typeHint may
be required.

6.2.6 Tips and Tricks

Internally, MATLAB represents all data as doubles unless you go through efforts to do other-
wise. MUEMEX detects integer parameters by a relative error test, seeing if the relative difference
between the value from MATLAB and the value of the int-typecast value are less than 1e-15.
Unfortunately, this means that MUEMEX will choose the incorrect type for parameters which are
doubles that happen to have an integer value (a good example of where this might happen would
be the parameter ‘smoother Chebyshev: alpha’, which defaults to 30.0). Since MUEMEX does no
internal typechecking of parameters (it uses MUELU’s internal checks), it has no way of detecting
this conflict. From the user’s perspective, avoiding this is as simple as adding a small perturbation
(greater than a relative 1e-15) to the parameter that makes it non-integer valued.

50



References

[1] Trilinos CMake Quickstart. http://trilinos.org/build_instructions.html, 2014.

[2] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. MUMPS: a
general purpose distributed memory sparse solver. In Applied Parallel Computing. New
Paradigms for HPC in Industry and Academia, pages 121–130. Springer, 2001.

[3] Roscoe A. Bartlett. Teuchos::RCP beginner’s guide. Technical Report SAND2004-3268,
Sandia National Labs, 2010.

[4] Eric Bavier, Mark Hoemmen, Sivasankaran Rajamanickam, and Heidi Thornquist. Amesos2
and Belos: Direct and iterative solvers for large sparse linear systems. Scientific Program-
ming, 20(3):241–255, 2012.

[5] P. B. Bochev, J. J. Hu, C. M. Siefert, and R. S. Tuminaro. An algebraic multigrid approach
based on a compatible gauge reformulation of Maxwell’s equations. SIAM Journal on Scien-
tific Computing, 31(1):557–583, 2008.

[6] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid tutorial.
SIAM, 2nd edition, 2000.

[7] Timothy A. Davis. Algorithm 832: UMFPACK v4.3 — an unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software (TOMS), 30(2):196–199, 2004.

[8] Timothy A. Davis and Ekanathan Palamadai Natarajan. Algorithm 907: KLU, a direct
sparse solver for circuit simulation problems. ACM Transactions on Mathematical Software
(TOMS), 37(3):36, 2010.

[9] Xiaoye S. Li, James W. Demmel, John R. Gilbert, Laura Grigori, Meiyue Shao, and Ichitaro
Yamazaki. SuperLU Users’ Guide. 2011.

[10] Paul Lin, Matthew Bettencourt, Stefan Domino, Travis Fisher, Mark Hoemmen, Jonathan J.
Hu, Eric Phipps, Andrey Prokopenko, Sivasankaran Rajamanickam, Christopher Siefert, and
Stephen Kennon. Towards extreme-scale simulations for low Mach fluids with second-
generation Trilinos. Parallel Processing Letters, 24(04):1442005, 2014.

[11] L. Olson, J. Schroder, and R. Tuminaro. A general interpolation strategy for algebraic multi-
grid using energy minimization. SIAM Journal on Scientific Computing, 33(2):966–991,
2011.

[12] Andrey Prokopenko, Christopher M. Siefert, Jonathan J. Hu, Mark Hoemmen, and Alicia
Klinvex. Ifpack2 User’s Guide 1.0. Technical Report SAND2016-5338, Sandia National
Labs, 2016.

51

http://trilinos.org/build_instructions.html


[13] Marzio Sala and Raymond S. Tuminaro. A new Petrov–Galerkin smoothed aggregation
preconditioner for nonsymmetric linear systems. SIAM Journal on Scientific Computing,
31(1):143–166, 2008.

[14] I. K. Tezaur, M. Perego, A. G. Salinger, R. S. Tuminaro, and S. F. Price. Albany/FELIX: a
parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver
built for advanced analysis. Geoscientific Model Development, 8:1197–1220, 2015.

[15] Heidi Thornquist, Roscoe A. Bartlett, Mark Hoemmen, Christopher Baker, and Michael Her-
oux. Teuchos: Trilinos tools library. http://trilinos.org/packages/teuchos, 2014.

[16] Ulrich Trottenberg, Cornelis Oosterlee, and Anton Schüller. Multigrid. Elsevier Academic
Press, 2001.

[17] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggregation
for second and fourth order problems. Computing, 56:179–196, 1996.

[18] Tobias A. Wiesner. Flexible Aggregation-based Algebraic Multigrid Methods for Contact
and Flow Problems. PhD thesis, 2014.

[19] Tobias A. Wiesner, Michael W. Gee, Andrey Prokopenko, and Jonathan J. Hu. The MueLu
tutorial. http://trilinos.org/packages/muelu/muelu-tutorial, 2014. SAND2014-
18624R.

[20] Tobias A. Wiesner, Raymond S. Tuminaro, Wolfgang A. Wall, and Michael W. Gee. Multi-
grid transfers for nonsymmetric systems based on Schur complements and Galerkin projec-
tions. Numerical Linear Algebra with Applications, 21(3):415–438, 2014.

52

http://trilinos.org/packages/teuchos
http://trilinos.org/packages/muelu/muelu-tutorial


Appendix A

Copyright and License

MueLu: A package for multigrid based preconditioning

Copyright 2012 Sandia Corporation

Under the terms of Contract DE–AC04–94AL85000 with Sandia Corporation, the U.S. Govern-
ment retains certain rights in this software.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the Corporation nor the names of the contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION “AS IS” AND ANY EX-
PRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

53



54



Appendix B

ML compatibility

MUELU provides a basic compatibility layer for ML parameter lists. This allows ML users to
quickly perform some experiments with MUELU.

First and most important: Long term, we would like to have users use the new MUELU

interface, as that is where most of new features will be made accessible. One should make note of
the fact that it may not be possible to make ML deck do exactly same things in ML and MUELU,
as internally ML implicitly makes some decision that we have no control over and which could be
different from MUELU.

There are basically two distinct ways to use ML input parameters with MUELU:

MLParameterListInterpreter: This class is the pendant of the ParameterListInterpreter

class for the MUELU parameters. It accepts parameter lists or XML files with ML parame-
ters and generates a MUELU multigrid hierarchy. It supports only a well-defined subset of
ML parameters which have a equivalent parameter in MUELU.

ML2MueLuParameterTranslator: This class is a simple wrapper class which translates ML
parameters to the corresponding MUELU parameters. It has to be used in combination with
the MUELU ParameterListInterpreter class to generate a MUELU multigrid hierarchy.
It is also meant to be used in combination with the CreateEpetraPreconditioner and
CreateTpetraPreconditioner routines (see §3.3). It supports only a small subset of the
ML parameters.

B.1 Usage of ML parameter lists with MUELU

B.1.1 MLParameterListInterpreter

The MLParameterListInterpreter directly accepts a ParameterList containing ML pa-
rameters. It also interprets the null space: vectors and the null space: dimension ML
parameters. However, it is recommended to provide the near null space vectors directly in the
MUELU way as shown in the following code snippet.

55



Teuchos::RCP<Tpetra::CrsMatrix<> > A;

// create A here ...

// XML file containing ML parameters

std::string xmlFile = "mlParameters.xml"

Teuchos::ParameterList paramList;

Teuchos::updateParametersFromXmlFileAndBroadcast(xmlFile, Teuchos::Ptr<Teuchos

::ParameterList>(&paramList), *comm);

// use ParameterListInterpreter with MueLu parameters as input

Teuchos::RCP<HierarchyManager> mueluFactory = Teuchos::rcp(new

MLParameterListInterpreter(*paramList));

RCP<Hierarchy> H = mueluFactory->CreateHierarchy();

H->GetLevel(0)->Set<RCP<Matrix> >("A", A);

H->GetLevel(0)->Set("Nullspace", nullspace);

H->GetLevel(0)->Set("Coordinates", coordinates);

mueluFactory->SetupHierarchy(*H);

Note that the MLParameterListInterpreter only supports a basic set of ML parameters
allowing to build smoothed aggregation transfer operators (see §B.2 for a list of compatible ML
parameters).

B.1.2 ML2MueLuParameterTranslator

The Ml2MueLuParameterTranslator class is a simple wrapper translating ML parameters to
the corresponding MUELU parameters. This allows the usage of the simple CreateEpetraPreconditioner
and CreateTpetraPreconditioner interface with ML parameters:

Teuchos::RCP<Tpetra::CrsMatrix<> > A;

// create A here ...

// XML file containing ML parameters

std::string xmlFile = "mlParameters.xml"

Teuchos::ParameterList paramList;

Teuchos::updateParametersFromXmlFileAndBroadcast(xmlFile, Teuchos::Ptr<Teuchos

::ParameterList>(&paramList), *comm);

// translate ML parameters to MueLu parameters

RCP<ParameterList> mueluParamList = Teuchos::getParametersFromXmlString(MueLu

::ML2MueLuParameterTranslator::translate(paramList,"SA"));

Teuchos::RCP<MueLu::TpetraOperator> mueLuPreconditioner =

MueLu::CreateTpetraPreconditioner(A, mueluParamList);

56



In a similar way, ML input parameters can be used with the standard MUELU parameter list
interpreter class. Note that the near null space vectors have to be provided in the MUELU way.

Teuchos::RCP<Tpetra::CrsMatrix<> > A;

// create A here ...

// XML file containing ML parameters

std::string xmlFile = "mlParameters.xml"

Teuchos::ParameterList paramList;

Teuchos::updateParametersFromXmlFileAndBroadcast(xmlFile, Teuchos::Ptr<Teuchos

::ParameterList>(&paramList), *comm);

// translate ML parameters to MueLu parameters

RCP<ParameterList> mueluParamList = Teuchos::getParametersFromXmlString(MueLu

::ML2MueLuParameterTranslator::translate(paramList,"SA"));

// use ParameterListInterpreter with MueLu parameters as input

Teuchos::RCP<HierarchyManager> mueluFactory = Teuchos::rcp(new

ParameterListInterpreter(*mueluParamList));

RCP<Hierarchy> H = mueluFactory->CreateHierarchy();

H->GetLevel(0)->Set<RCP<Matrix> >("A", A);

H->GetLevel(0)->Set("Nullspace", nullspace);

H->GetLevel(0)->Set("Coordinates", coordinates);

mueluFactory->SetupHierarchy(*H);

Note that the set of supported ML parameters is very limited. Please refer to §B.2 for a list of
all compatible ML parameters.

B.2 Compatible ML parameters

B.2.1 General ML options

ML output [int] Control of the amount of printed information.
Possible values: 0-10 with 0=no output and 10=maxi-
mum verbosity. Default: 0 Compatibility: MLParam-
eterListInterpreter, ML2MueLuParameterTranslator.

PDE equations [int] Number of PDE equations at each grid node.
Only constant block size is considered. De-
fault: 1 Compatibility: MLParameterListInterpreter,
ML2MueLuParameterTranslator.

57



max levels [int] Maximum number of levels in a hierarchy. De-
fault: 10 Compatibility: MLParameterListInterpreter,
ML2MueLuParameterTranslator.

prec type [string] Multigrid cycle type. Possible values: ”MGV”,
”MGW”. Other values are NOT supported by MueLu.
Default: ”MGV” Compatibility: MLParameterListIn-
terpreter, ML2MueLuParameterTranslator.

B.2.2 Smoothing and coarse solver options

smoother: type [string] Smoother type for fine- and intermedium
multigrid levels. Possible values: ”Jacobi”, ”Gauss-
Seidel”, ”symmetric Gauss-Seidel”, ”Chebyshev”,
”ILU”. Default: ”symmetric Gauss-Seidel”
Compatibility: MLParameterListInterpreter,
ML2MueLuParameterTranslator.

smoother: sweeps [int] Number of smoother sweeps for relaxation
based level smoothers. In case of Chebyshev
smoother it denotes the polynomial degree. De-
fault: 2 Compatibility: MLParameterListInterpreter,
ML2MueLuParameterTranslator.

smoother: damping factor [double] Damping factor for relaxation based level
smoothers. Default: 1.0 Compatibility: MLParame-
terListInterpreter, ML2MueLuParameterTranslator.

smoother: Chebyshev

alpha

[double] Eigenvalue ratio for Chebyshev level
smoother. Default: 20 Compatibility: MLParame-
terListInterpreter, ML2MueLuParameterTranslator.

smoother: pre or post [string] Pre- and post-smoother combination. Possible
values: ”pre” (only pre-smoother), ”post” (only post-
smoother), ”both” (both pre-and post-smoothers). De-
fault: ”both” Compatibility: MLParameterListInter-
preter, ML2MueLuParameterTranslator.

58



max size [int] Maximum dimension of a coarse grid. ML
will stop coarsening once it is achieved. De-
fault: 128 Compatibility: MLParameterListInter-
preter, ML2MueLuParameterTranslator.

coarse: type [string] Solver for coarsest level. Possible val-
ues: ”Amesos-KLU”, ”Amesos-Superlu” (depend-
ing on MUELU installation). Default: ”Amesos-
KLU” Compatibility: MLParameterListInterpreter,
ML2MueLuParameterTranslator.

B.2.3 Transfer operator options

energy minimization:

enable

[int] Enable energy minimization transfer op-
erators (using Petrov-Galerkin approach). De-
fault: 0 Compatibility: MLParameterListInterpreter,
ML2MueLuParameterTranslator.

aggregation: damping

factor

[double] Damping factor for smoothed aggregation.
Default: 1.33 Compatibility: MLParameterListInter-
preter, ML2MueLuParameterTranslator.

B.2.4 Rebalancing options

repartition: enable [int] Rebalancing on/off switch. Only limited support
for repartitioning. Does not use provided node coordi-
nates. Default: 0 Compatibility: MLParameterListIn-
terpreter.

repartition: start level [int] Minimum level to run partitioner. MUELU does
not rebalance levels finer than this one. Default: 1
Compatibility: MLParameterListInterpreter.

repartition: min per

proc

[int] Minimum number of rows per MPI process. If
the actual number if smaller, then rebalancing occurs.
Default: 512 Compatibility: MLParameterListInter-
preter.

59



repartition: max min

ratio

[double] Maximum nonzero imbalance ratio. If the
actual number is larger, the rebalancing occurs. De-
fault: 1.3 Compatibility: MLParameterListInterpreter.

60



DISTRIBUTION

Email–External (encrypt for OUO)
Name Company Email Address Company Name

Matthias Mayr matthias.mayr@unibw.de University of the Bun-
deswehr Munich

Andrey Prokopenko prokopenkoav@ornl.gov Oak Ridge National
Laboratory

Tobias Wiesner tobias.wiesner@leica-
geosystems.com

Leica Geosystems AG

Email–Internal
Name Org. Sandia Email Address

Luc Berger-Vergiat 1442 lberge@sandia.gov
Christopher Siefert 1465 csiefer@sandia.gov
Christian Glusa 1465 caglusa@sandia.gov
Mark Hoemmen 1541 mhoemme@sandia.gov
Jonathan Hu 1465 jhu@sandia.gov
Paul Lin 1422 ptlin@sandia.gov
Ray Tuminaro 1442 rstumin@sandia.gov
Technical Library 9536 libref@sandia.gov

61



62



v1.39



Sandia National Laboratories
is a multimission laboratory
managed and operated by Na-
tional Technology & Engineer-
ing Solutions of Sandia LLC,
a wholly owned subsidiary of
Honeywell International Inc.
for the U.S. Department of En-
ergys National Nuclear Secu-
rity Administration under con-
tract DE-NA0003525.


	Introduction
	Multigrid background
	Getting Started
	Overview of MueLu
	Configuration and Build
	Dependencies
	Configuration

	Examples in code
	MueLu as a preconditioner within Belos
	MueLu as a preconditioner for AztecOO
	MueLu's structured algorithms
	MueLu's Maxwell solver
	Further remarks


	Performance tips
	MueLu options
	Using parameters on individual levels
	Parameter validation
	General options
	Smoothing and coarse solver options
	Aggregation options
	Rebalancing options
	Multigrid algorithm options
	Reuse options
	Miscellaneous options
	Maxwell solver options

	MueMex: The MATLAB Interface for MueLu
	CMake Configure and Make
	BLAS & LAPACK Option #1: Static Builds
	BLAS & LAPACK Option #2: LD_PRELOAD
	Running MATLAB

	Using MueMex
	Setup Mode
	Solve Mode
	Cleanup Mode
	Status Mode
	Get Mode
	Tips and Tricks 


	References
	Copyright and License
	ML compatibility
	Usage of ML parameter lists with MueLu
	MLParameterListInterpreter
	ML2MueLuParameterTranslator

	Compatible ML parameters
	General ML options
	Smoothing and coarse solver options
	Transfer operator options
	Rebalancing options



